Studiare il metabolismo cellulare con la microscopia… label-free!

Il metabolismo cellulare è l’insieme coordinato delle reazioni biochimiche che consentono alle cellule di ottenere energia, sintetizzare componenti e mantenere l’omeostasi. Fondamento della fisiologia cellulare, è strettamente regolato sia da stimoli interni che esterni, con conseguenti ripercussioni sullo stato e salute dell’intero organismo.
Numerosi attori giocano un ruolo nel metabolismo cellulare, sia a livello di strutture cellulari che di composti molecolari (Figura 1). Gli organelli coinvolti sono svariati, ma il protagonista principale è senza dubbio il network mitocondriale. Celebre struttura sub-cellulare, il mitocondrio rappresenta la centrale elettrica della cellula, essendo il principale deputato alla produzione di energia (AppNoteMitochondria). Coinvolti anche nell’omeostasi del calcio e nella regolazione dello stress ossidativo, i mitocondri producono grandi quantità di ATP (Adenosintrifosfato) attraverso un processo denominato fosforilazione ossidativa. L’ATP è considerato la moneta energetica della cellula e rappresenta la fonte di energia principale; questa molecola viene continuamente rigenerata attraverso due vie metaboliche principali: la glicolisi e la fosforilazione ossidativa. Questi due processi catabolici sono finemente regolati e determinano lo stato metabolico della cellula. Un ruolo cruciale in queste due vie metaboliche è ricoperto dal NADH, un coenzima che esiste in forma libera (citoplasmatica) e legata a proteine (soprattutto mitocondriali) in base allo stato metabolico della cellula.
Il microscopio olotomografico per studiare i neurotrasmettitori

Il microscopio olotomografico fornisce dati e risposte anche nello studio dei neurotrasmettitori.
Quanto conosci la noradrenalina?
La noradrenalina è un neurotrasmettitore cruciale prodotto dal sistema nervoso, che interviene nella regolazione della pressione sanguigna, dei livelli di zuccheri nel sangue e della scomposizione dei grassi. Agisce tramite adrenorecettori di membrana, suddivisi in tre classi principali: α1, α2 e β, ognuna con funzioni specifiche in base alla tipologia cellulare coinvolta. Per esempio, negli adipociti, questi recettori modulano la lipolisi delle riserve di grasso attraverso un equilibrio di segnali stimolatori e inibitori.
Il citoscheletro della cellula con Nanolive

Il citoscheletro assicura l’integrità strutturale delle cellule, costituito da filamenti e microtubuli proteici nel citoplasma. Oltre a mantenere la struttura, consente il movimento e la modifica della forma delle cellule, il trasporto di vescicole e organelli, la contrazione muscolare e la formazione del fuso mitotico. Tra le sue strutture ci sono le Stress Fibers, composte da actina e miosina, cruciali per la contrazione, adesione e migrazione cellulare. ?Queste strutture dinamiche sono difficili da studiare con la microscopia tradizionale, che utilizza campioni fissati. Il live-imaging è essenziale per osservare le modifiche delle Stress Fibers nel tempo, ma i marcatori fluorescenti hanno limitazioni, come interferire con la mobilità cellulare e causare fototossicità. ?L’imaging label-free, come l’olotomografia di Nanolive SA offre una soluzione visualizzando strutture cellulari senza marcatori e senza alterarne la struttura. Nell’immagine gli screenshot di un video olotomografico di 10 ore mostra la distribuzione dei filamenti di actina e dimostra la capacità di Nanolive di visualizzarli senza fluorescenza. Questo metodo permette di monitorare colture cellulari a lungo termine, facilitando lo studio del rimodellamento del citoscheletro.
La semplicità non è più un optional

Lo sviluppo tecnologico, informatico e molecolare ha portato alla creazione di microscopi con prestazioni sempre migliori arrivando addirittura a superare il limite ottico di risoluzione (200nm). Tuttavia, la crescente performance corrisponde ad un’inevitabilmente crescita della complessità degli strumenti e quindi del loro utilizzo. Di conseguenza, la vera sfida odierna non è più produrre microscopi dalle performance eccezionali, ma di combinare qualità d’immagine e facilità d’utilizzo. Per quanto la necessità di immagini ad altissime risoluzioni sia essenziale, la rapidità nelle analisi e nella produzione di risultati, la semplicità della gestione dei dati e della loro quantificazione iniziano ad avere un peso sempre più importante, se non addirittura maggiore, sulla complessa bilancia del microscopio perfetto.
Le Ciglia

La storia delle ciglia è legata all’evoluzione della microscopia, fondamentale per la loro scoperta e comprensione. In questa analisi, esploreremo le tecniche microscopiche per lo studio delle ciglia. Verso il 1800, strutture come il nucleo, i mitocondri e le ciglia sono state identificate. Nonostante l’interesse iniziale, le ciglia sono state dimenticate fino alla microscopia elettronica del 1953, evidenziando il loro ruolo chiave come sensori molecolari e nelle ciliopatie.
Hai mai visto una cellula bere? Le cellule bevono responsabilmente

Come tutti gli organismi viventi, anche le cellule necessitano di assimilare materiale e liquidi per poter sopravvivere e svolgere le proprie funzioni. L’introduzione all’interno della cellula di materiale extracellulare viene definita endocitosi. Tale processo consiste nella creazione di un’invaginazione di membrana attorno al materiale esterno e conseguente formazione di una vescicola interna contenente il materiale. Grazie a questo meccanismo la cellula è in grado di inglobare liquidi e nutrienti, ma anche di “inghiottire” patogeni al fine di neutralizzarli. Vari tipi di endocitosi vengono distinti a seconda del materiale introdotto; nello specifico l’assimilazione di liquidi extracellulari viene chiamata pinocitosi.