Anche le cellule più brave sbaglianoCome il nostro corpo “mangia” i batteri

alve, mitosi, fototossictà, live-cell, imaging, label-free, olotomografia

Gli organismi pluricellulari si sviluppano da uno zigote attraverso mitosi e citodieresi. Errori in questi processi possono causare danni, come la formazione di cellule multinucleate e apoptosi. Un esperimento di live-cell imaging mostra una cellula che accumula nuclei a causa della citochinesi fallita, portando infine alla morte cellulare programmata. L’uso dell’olotomografia Nanolive permette di osservare questi processi senza danneggiare le cellule come potrebbe fare la fluorescenza.

High-Speed Arbitrary Frame Scanning: la libertà di scegliere

microscopia, biologia, biotecnologie, neuroscienze, femtonics, due fotoni,

Come già sottolineato più volte nei nostri precedenti articoli e application notes (visita questa pagina per trovarli tutti: Femtonics), la tecnologia principe delle neuroscienze è la microscopia a 2 fotoni. Tale tecnica di microscopia consente di penetrare tessuti spessi sia in vitro che in vivo grazie all’utilizzo di laser ad ampia lunghezza d’onda. Pertanto, nel campo delle neuroscienze il microscopio a 2 fotoni viene comunemente utilizzato per osservare sezioni di tessuto cerebrale oppure direttamente il sistema nervoso dell’organismo vivente. Oltre a consentire l’accesso ai tessuti cerebrali più profondi, i laser dei microscopi a due fotoni hanno una fototossicità ridotta, pertanto compatibili con campioni vivi.

Tuttavia, nonostante l’efficienza dei microscopi a 2 fotoni è ragionevole attendersi che la visualizzazione di campioni tridimensionali sia caratterizzata da svariate difficoltà tecniche, soprattutto in vivo. Oltre alla marcatura a fluorescenza, al monitoraggio dei parametri vitali dell’animale, alle procedure di chirurgia o di anestesia necessarie, troviamo il problema dell’orientamento e della messa a fuoco del punto d’interesse. È infatti plausibile supporre che durante l’osservazione di campioni tridimensionali in vivo, la nostra struttura di interesse (es. assone) non sia posizionata nella direzione desiderata (ovvero quella del piano focale).

Optogenetica con Femtonics

optogenetica, femtonics, microscopio a due fotoni, neuroscienze, organoidi

Scoprire il contributo di ogni singolo neurone all’interno del sistema nervoso è il sogno di tutti i neuroscienziati. Districare i complessi circuiti neuronali rimane un’impresa titanica, ma l’avanzamento tecnologico ha consentito importanti passi avanti nell’analisi di questi network. Per esempio, la microscopia a 2 fotoni ha permesso la visualizzazione di grandi volumi cerebrali in vivo grazie all’impiego di laser a infrarosso (IR) caratterizzati da un elevato potere penetrante e ridotta fototossicità. Un’ulteriore evoluzione tecnologica che ha contribuito fortemente allo studio dei network neuronali è l’optogenetica, ovvero la combinazione di tecniche ottiche e genetiche allo scopo di stimolare e registrare attività neuronali. La sola osservazione dei neuroni nella maggior parte dei casi fornisce dati insufficienti, di conseguenza è necessaria la combinazione di strategie complementari per collegare le varie attività registrate e dimostrare il nesso causale tra esse.

Neuroscienziati e marionette: come controllare i neuroni come fili di un pupazzo

Scoprire il contributo di ogni singolo neurone ad ogni singolo comportamento è il sogno di tutti i neuroscienziati. Districare i complessi circuiti neuronali rimane un’impresa titanica, ma l’avanzamento tecnologico ha consentito importanti passi avanti nell’analisi di questi network. Per esempio, la microscopia a 2 fotoni

Il Movimento dei Cloroplasti

In questo articolo, presentiamo un in vivo live imaging condotto da FEMTONICS con uno dei suoi microscopi a 2 fotoni: FEMTO SMART. SMART è un sistema multifotone dotato di scanner sia galvanometrici che risonanti e caratterizzato da un ampio spazio sotto l’obiettivo permettendo l’imaging di qualsiasi organismo modello. Ad ogni modo, in questo esperimento l’estesa disponibilità spaziale non è servita, in quanto è stata utilizzata una semplice foglia di rucola (Eruca sativa). Acquisendo un corto time-lapse video di 30 minuti è stato possibile osservare i cloroplasti sulla superficie della foglia ed alcuni dei loro movimenti subcellulari

Girotondo Nucleare

Escluse rarissime eccezioni, in ogni cellula del nostro corpo è presente un nucleo. Il nucleo è il centro di controllo della cellula e al suo interno troviamo il nostro materiale genetico, le istruzioni della vita che determinano il fenotipo della cellula e dell’intero organismo. Tuttavia, la gestione del DNA non è l’unica funzione di questo organello, infatti anche il suo posizionamento e i suoi movimenti contribuiscono a vari eventi cellulari. Posizione e movimenti del nucleo all’interno della cellula sono infatti finemente regolati al fine di specifiche funzioni come migrazione cellulare o mitosi.