Anche le cellule più brave sbaglianoCome il nostro corpo “mangia” i batteri

alve, mitosi, fototossictà, live-cell, imaging, label-free, olotomografia

Gli organismi pluricellulari si sviluppano da uno zigote attraverso mitosi e citodieresi. Errori in questi processi possono causare danni, come la formazione di cellule multinucleate e apoptosi. Un esperimento di live-cell imaging mostra una cellula che accumula nuclei a causa della citochinesi fallita, portando infine alla morte cellulare programmata. L’uso dell’olotomografia Nanolive permette di osservare questi processi senza danneggiare le cellule come potrebbe fare la fluorescenza.

Analisi delle strutture metallorganiche (MOFs) in polvere

microscopia, miicroscopiia elettronica, sem, metallorganiche, mof, metalli, microscopio elettronico a scansione

la composizione e la microstruttura delle polveri delle materie prime influenzano le proprietà finali dei materiali. La distribuzione granulometrica delle particelle, la forma, la porosità e la superficie specifica delle polveri possono corrispondere a ben precise e peculiari proprietà del materiale. Pertanto la verifica e il controllo della materia prima in polvere è un prerequisito fondamentale.
Nel settore della catalisi, la realizzazione di materiali metallorganici (MOFs) per migliorare le prestazioni catalitiche superficiali è diventata oggi uno dei temi di ricerca più studiati. Scopriamo come il SEM può contribuire allo studio e allo sviluppo di questi materiali

La semplicità non è più un optional

microscopia, imaging, microscopisti, microscopio plug and play, biotecnologia, biologia

Lo sviluppo tecnologico, informatico e molecolare ha portato alla creazione di microscopi con prestazioni sempre migliori arrivando addirittura a superare il limite ottico di risoluzione (200nm). Tuttavia, la crescente performance corrisponde ad un’inevitabilmente crescita della complessità degli strumenti e quindi del loro utilizzo. Di conseguenza, la vera sfida odierna non è più produrre microscopi dalle performance eccezionali, ma di combinare qualità d’immagine e facilità d’utilizzo. Per quanto la necessità di immagini ad altissime risoluzioni sia essenziale, la rapidità nelle analisi e nella produzione di risultati, la semplicità della gestione dei dati e della loro quantificazione iniziano ad avere un peso sempre più importante, se non addirittura maggiore, sulla complessa bilancia del microscopio perfetto.

Il SEM per lo studio della texture delle celle fotovoltaiche

SEM, microscopia, microscopia elettronica, celle

Nel settore delle energie rinnovabili, i sistemi per la produzione di energia solare fotovoltaica (PV) rivestono da molti anni un ruolo di primo piano. In quanto componente centrale della produzione di energia fotovoltaica, le celle PV sono sempre oggetto di sviluppo e ottimizzazione. Il microscopio elettronico a scansione (SEM) svolge un ruolo fondamentale sia nell’ambito R&D che in quello del miglioramento del processo produttivo delle celle fotovoltaiche.

Detto in maniera molto sintetica, una cella PV è un sottile foglio (wafer) di materiale semiconduttore in grado di convertire l’energia solare in energia elettrica. Le celle fotovoltaiche attualmente in commercio e prodotte in serie sono principalmente celle in silicio, che si dividono in celle in silicio monocristallino, celle in silicio policristallino e celle in silicio amorfo.

Nell’attuale processo di produzione delle celle fotovoltaiche, al fine di migliorare ulteriormente l’efficienza di conversione energetica, sulla superficie della cella viene solitamente realizzata una speciale struttura texturizzata. Nello specifico, la texture sulla superficie di queste celle incrementa l’assorbimento della luce grazie all’aumentato numero di riflessioni della luce irradiata sulla superficie del wafer di silicio. Questa particolare texture non solo riduce la riflettività finale della superficie, ma crea anche “trappole di luce” all’interno della cella, aumentando così in modo significativo l’efficienza di conversione della cella stessa, anche a diversi angoli di incidenza (Fig.1). Rispetto ad una superficie piana, infatti, un wafer di silicio con struttura superficiale piramidale ha una maggiore probabilità che la componente riflessa dalla luce incidente agisca nuovamente sulla superficie del wafer anziché riflettersi in aria, consentendo l’assorbimento di più fotoni e fornendo dunque più coppie elettrone-lacuna.

Analisi dei materiali ceramici con microscopia elettronica a scansione

microscopia, microscopio elettronico, sem, sem feg, emissione di campo, ciqtek, sem5000

I materiali ceramici presentano una serie di proprietà tra cui elevato punto di fusione, elevata durezza, ottima resistenza all’usura e resistenza all’ossidazione, e per questo sono ampiamente utilizzati in svariati settori come l’industria elettronica, automobilistica, tessile, chimica e aerospaziale. Le proprietà fisiche dei materiali ceramici dipendono in gran parte dalla loro microstruttura, che è possibile caratterizzare grazie all’osservazione al SEM.

I materiali ceramici sono una classe di materiali inorganici non metallici realizzati a partire da composti naturali o sintetici mediante formatura e sinterizzazione ad alta temperatura, e possono essere suddivisi in materiali ceramici generali e materiali ceramici speciali.

I materiali ceramici speciali possono essere a loro volta classificati o in base alla composizione chimica: ceramiche su base ossidi, nitruri, carburi, boruri, siliciuri, ecc.; oppure in base alle loro caratteristiche e applicazioni: ceramiche strutturali e ceramiche funzionali.

High-Speed Arbitrary Frame Scanning: la libertà di scegliere

microscopia, biologia, biotecnologie, neuroscienze, femtonics, due fotoni,

Come già sottolineato più volte nei nostri precedenti articoli e application notes (visita questa pagina per trovarli tutti: Femtonics), la tecnologia principe delle neuroscienze è la microscopia a 2 fotoni. Tale tecnica di microscopia consente di penetrare tessuti spessi sia in vitro che in vivo grazie all’utilizzo di laser ad ampia lunghezza d’onda. Pertanto, nel campo delle neuroscienze il microscopio a 2 fotoni viene comunemente utilizzato per osservare sezioni di tessuto cerebrale oppure direttamente il sistema nervoso dell’organismo vivente. Oltre a consentire l’accesso ai tessuti cerebrali più profondi, i laser dei microscopi a due fotoni hanno una fototossicità ridotta, pertanto compatibili con campioni vivi.

Tuttavia, nonostante l’efficienza dei microscopi a 2 fotoni è ragionevole attendersi che la visualizzazione di campioni tridimensionali sia caratterizzata da svariate difficoltà tecniche, soprattutto in vivo. Oltre alla marcatura a fluorescenza, al monitoraggio dei parametri vitali dell’animale, alle procedure di chirurgia o di anestesia necessarie, troviamo il problema dell’orientamento e della messa a fuoco del punto d’interesse. È infatti plausibile supporre che durante l’osservazione di campioni tridimensionali in vivo, la nostra struttura di interesse (es. assone) non sia posizionata nella direzione desiderata (ovvero quella del piano focale).

Profondità di campo

sem, coxem sem compatto, microscopio elettronico a scansione, sem tabletop

La lavorazione dei fogli di alluminio nella produzione di lattine è un processo definito a basso costo che coinvolge volumi molto elevati. Nel nostro ultimo articolo scopri perché il controllo qualità con SEM e EDS è fondamentale per ottimizzare il processo produttivo e minimizzare gli sprechi di materia prima.

<strong>Le tante facce del detector BSE</strong>

bse, backscattred, sem, microscopio elettronico, microscopio elettronico a scansione, sem, eds, detector, ciqtek, coxem

Nel Microscopio Elettronico a Scansione, il fascio elettronico, generato dalla sorgente ed accelerato attraverso la colonna, giunge sul campione e ne scansiona la superficie. In ogni punto della scansione, l’interazione tra elettroni e materia produce dei segnali che vengono sfruttati dai detector presenti nel SEM per generare le immagini o effettuare analisi elementali.

I segnali più spesso utilizzati sono quello degli elettroni secondari (SE), quello degli elettroni retrodiffusi, o back-scattered (BSE), e quello dei raggi X.

Poiché gli elettroni secondari provengono da una zona più superficiale del campione rispetto agli elettroni retrodiffusi che sono generati in un volume di interazione più ampio, tendenzialmente le immagini per la caratterizzazione morfologica vengono acquisite con il detector SE. Tuttavia, i più recenti detector BSE sono ormai in grado di fornire immagini ad altissima risoluzione e con un elevato dettaglio morfologico, grazie ad una sensibilità migliorata che permette di lavorare anche alle basse tensioni di accelerazione, e ad una efficace pre-amplificazione che riduce il rumore e massimizza la velocità di risposta del sensore. Grazie al suo principio di funzionamento, il detector BSE può dare grandi soddisfazioni e riservare interessanti sorprese.

Come è fatto: lattine di alluminio

alluminio, sem, eds, microanalisi, microscopio elettronico, microscopio, microscopio elettronico a scansione, sem, eds, coxem, ciqtek

La lavorazione dei fogli di alluminio nella produzione di lattine è un processo definito a basso costo che coinvolge volumi molto elevati. Nel nostro ultimo articolo scopri perché il controllo qualità con SEM e EDS è fondamentale per ottimizzare il processo produttivo e minimizzare gli sprechi di materia prima.

Mai più video mossi con la 3D Real-Time Motion Correction

femtonics, motion correction, 2 fotoni, neuroscienze, organoidi

Il FocusPinner di hashtag#FEMTO3DATLAS è una soluzione innovativa nel campo delle hashtag#neuroscienze per affrontare le sfide legate alle misurazioni in vivo. Questo microscopio a 2 fotoni utilizza la tecnologia Acousto-Optic per acquisire rapidamente regioni tridimensionali, superando gli ostacoli tecnici degli esperimenti in vivo. Il modulo hashtag#FocusPinner, basato su una correzione del movimento in tempo reale, risolve problemi legati ai movimenti del campione durante l’imaging. La tecnologia Acousto-Optic consente una correzione efficiente delle vibrazioni lungo tutti e 3 gli assi. La stabilizzazione si basa su un punto di riferimento selezionato dall’operatore, garantendo misurazioni precise.

Le Ciglia

ciglia, biologia, biotecnologie, microscopia, imaging, cellule, invitro, colture cellulari, nucleo, membrana, cellula

La storia delle ciglia è legata all’evoluzione della microscopia, fondamentale per la loro scoperta e comprensione. In questa analisi, esploreremo le tecniche microscopiche per lo studio delle ciglia. Verso il 1800, strutture come il nucleo, i mitocondri e le ciglia sono state identificate. Nonostante l’interesse iniziale, le ciglia sono state dimenticate fino alla microscopia elettronica del 1953, evidenziando il loro ruolo chiave come sensori molecolari e nelle ciliopatie.

Nanolive è virale

nanolive, live-cell imaging label-free

Nanolive combina l’olotomografia con la fluorescenza per visualizzare strutture come i virus. L’implementazione di un sistema LED riduce i danni da irradiamento e la fototossicità. Un esempio mostra cellule umane infettate da un adenovirus con GFP, visualizzato attraverso la fluorescenza. Questa configurazione permette di seguire il fenotipo cellulare nel tempo senza alterare significativamente il campione.

Aurox Unity: lo Spinning Disk Plug&Play

Aurox, confocale spinning disc, laser free

La microscopia a fluorescenza è una tecnica essenziale in tutti i campi della biologia moderna. I sistemi ottici a fluorescenza sono ormai presenti in tutti gli istituti e ospedali, trovando applicazione sia nella ricerca che nella diagnostica (Figura 1). Lo sviluppo tecnologico, informatico e molecolare ha portato alla creazione di microscopi con prestazioni sempre migliori arrivando addirittura a superare il limite ottico di risoluzione (200nm). Tuttavia, la crescente performance corrisponde ad un’inevitabilmente crescita della complessità degli strumenti e quindi del loro utilizzo. Di conseguenza, la vera sfida odierna non è più produrre microscopi dalle performance eccezionali, ma di combinare qualità d’immagine e facilità d’utilizzo.

Hai mai visto una cellula bere? Le cellule bevono responsabilmente

Come tutti gli organismi viventi, anche le cellule necessitano di assimilare materiale e liquidi per poter sopravvivere e svolgere le proprie funzioni. L’introduzione all’interno della cellula di materiale extracellulare viene definita endocitosi. Tale processo consiste nella creazione di un’invaginazione di membrana attorno al materiale esterno e conseguente formazione di una vescicola interna contenente il materiale. Grazie a questo meccanismo la cellula è in grado di inglobare liquidi e nutrienti, ma anche di “inghiottire” patogeni al fine di neutralizzarli. Vari tipi di endocitosi vengono distinti a seconda del materiale introdotto; nello specifico l’assimilazione di liquidi extracellulari viene chiamata pinocitosi.

Girotondo Nucleare

Escluse rarissime eccezioni, in ogni cellula del nostro corpo è presente un nucleo. Il nucleo è il centro di controllo della cellula e al suo interno troviamo il nostro materiale genetico, le istruzioni della vita che determinano il fenotipo della cellula e dell’intero organismo. Tuttavia, la gestione del DNA non è l’unica funzione di questo organello, infatti anche il suo posizionamento e i suoi movimenti contribuiscono a vari eventi cellulari. Posizione e movimenti del nucleo all’interno della cellula sono infatti finemente regolati al fine di specifiche funzioni come migrazione cellulare o mitosi.

Una nuova Era della microscopia sta iniziando

Una nuova era della microscopia è dietro l’angolo…siate i primi a scoprirla: www.nanolive.ch/amazing Nanolive ha creato ciò che mancava che diventerà un must-have nel prossimo futuro. Condividete con i vostri contatti! #nanolive #amazing #productlaunch #cellbiology #biotechnology #livecell #ricerca #biologia #culturecellulari #microscopia #microscopisti #labelfree #olografia #scienzadellavita